refactor to modules; update player based on new prototype

This commit is contained in:
Max Bradbury 2021-05-15 16:59:51 +01:00
parent 04f86f6aa6
commit 6a0251dc0c
10 changed files with 749 additions and 682 deletions

View File

@ -7,7 +7,14 @@ edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ggez = "^0.5.1"
toml = "^0.5.6"
env_logger = "0.8.3"
image = "0.23.14"
log = "0.4.14"
pixels = "0.3.0"
rodio = "^0.11.0"
rodio-xm = { git = "https://tinybird.dev/max/rodio-xm/", branch = "master" }
serde = "^1.0.114"
serde_derive = "^1.0.114"
toml = "^0.5.6"
winit = "0.24.0"
winit_input_helper = "0.9.0"

42
TODO.md Normal file
View File

@ -0,0 +1,42 @@
# to do
## game data structure
### parser
* ~move tests into their respective modules where appropriate~
## players
* ~graphics~
* re-use player avatar drawing function as generic image drawing function
* text (how?)
* support older graphics adaptors
### linux
* ~get working~
### windows
* ~try to compile~
* does not work on my acer laptop (2012)
* does not work on my windows 8 VM
* works on my computer via wine!
### future: arm/raspberry pi?
### web
will need:
* base64 decoding
* zip parsing
* webgl or something?
* audio??
## editor
* build something in egui
* can we do a web version that works with zip files?
* investigate zip compression/decompression in rust

View File

@ -1,302 +1,301 @@
use ggez;
#[windows_subsystem = "windows"]
// Next we need to actually `use` the pieces of ggez that we are going
// to need frequently.
use ggez::event::{KeyCode, KeyMods, EventsLoop};
use ggez::{event, graphics, Context, GameResult};
use log::error;
use pixels::{Error, SurfaceTexture, PixelsBuilder};
use pixels::wgpu::BackendBit;
use winit::dpi::{LogicalPosition, LogicalSize, PhysicalSize};
use winit::event::{Event, VirtualKeyCode};
use winit::event_loop::{ControlFlow, EventLoop};
use winit_input_helper::WinitInputHelper;
use std::collections::HashMap;
// We'll bring in some things from `std` to help us in the future.
use std::time::{Duration, Instant};
#[derive(Clone, Debug)]
struct Image {
pixels: [u8; 64]
}
use ggez::graphics::{Rect};
use ggez::conf::FullscreenType;
struct Game {
width: usize,
height: usize,
player_position: (u8, u8),
player_avatar: Image,
palette: [[u8; 4]; 4],
current_music: Option<String>,
music: HashMap<String, rodio::Sink>,
}
// The first thing we want to do is set up some constants that will help us out later.
// Here we define the size of our game board in terms of how many grid
// cells it will take up. We choose to make a 30 x 20 game board.
const GRID_SIZE: (u8, u8) = (16, 9);
// dimension, i.e. 8×8 (square)
const GRID_CELL_SIZE: u8 = 8;
const UPDATES_PER_SECOND: f32 = 0.4;
// And we get the milliseconds of delay that this update rate corresponds to.
const MILLIS_PER_UPDATE: u64 = (1.0 / UPDATES_PER_SECOND * 1000.0) as u64;
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
struct GridPosition { x: u8, y: u8 }
impl GridPosition {
/// We make a standard helper function so that we can create a new `GridPosition`
/// more easily.
pub fn new(x: u8, y: u8) -> Self {
GridPosition { x, y }
}
/// We'll make another helper function that takes one grid position and returns a new one after
/// making one move in the direction of `dir`. We use our `SignedModulo` trait
/// above, which is now implemented on `i16` because it satisfies the trait bounds,
/// to automatically wrap around within our grid size if the move would have otherwise
/// moved us off the board to the top, bottom, left, or right.
pub fn new_from_move(pos: GridPosition, dir: Direction) -> Self {
match dir {
Direction::Up => GridPosition::new(pos.x, pos.y - 1),
Direction::Down => GridPosition::new(pos.x, pos.y + 1),
Direction::Left => GridPosition::new(pos.x - 1, pos.y),
Direction::Right => GridPosition::new(pos.x + 1, pos.y),
impl Game {
fn draw(&self, screen: &mut [u8]) {
// clear screen
for pixel in screen.chunks_exact_mut(4) {
pixel.copy_from_slice(&self.palette[0]);
}
}
}
/// We implement the `From` trait, which in this case allows us to convert easily between
/// a GridPosition and a ggez `graphics::Rect` which fills that grid cell.
/// Now we can just call `.into()` on a `GridPosition` where we want a
/// `Rect` that represents that grid cell.
impl From<GridPosition> for graphics::Rect {
fn from(pos: GridPosition) -> Self {
graphics::Rect::new_i32(
pos.x as i32 * GRID_CELL_SIZE as i32,
pos.y as i32 * GRID_CELL_SIZE as i32,
GRID_CELL_SIZE as i32,
GRID_CELL_SIZE as i32,
)
}
}
let (player_x, player_y) = self.player_position;
impl From<(u8, u8)> for GridPosition {
fn from(pos: (u8, u8)) -> Self {
GridPosition { x: pos.0, y: pos.1 }
}
}
// each row of player avatar
for (tile_y, row) in self.player_avatar.pixels.chunks(8).enumerate() {
for (tile_x, pixel) in row.iter().enumerate() {
let colour = self.palette[*pixel as usize];
/// Next we create an enum that will represent all the possible
/// directions that our snake could move.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum Direction {
Up,
Down,
Left,
Right,
}
impl Direction {
/// We also create a helper function that will let us convert between a
/// `ggez` `Keycode` and the `Direction` that it represents. Of course,
/// not every keycode represents a direction, so we return `None` if this
/// is the case.
pub fn from_keycode(key: KeyCode) -> Option<Direction> {
match key {
KeyCode::Up => Some(Direction::Up),
KeyCode::Down => Some(Direction::Down),
KeyCode::Left => Some(Direction::Left),
KeyCode::Right => Some(Direction::Right),
_ => None,
}
}
}
struct Avatar {
pos: GridPosition,
}
impl Avatar {
pub fn new(pos: GridPosition) -> Self {
Avatar {
pos
}
}
/// The main update function for our snake which gets called every time
/// we want to update the game state.
fn update(&mut self) {
}
/// Again, note that this approach to drawing is fine for the limited scope of this
/// example, but larger scale games will likely need a more optimized render path
/// using SpriteBatch or something similar that batches draw calls.
fn draw(&self, ctx: &mut Context, multiplier: &u8) -> GameResult<()> {
let dimension = (GRID_CELL_SIZE * multiplier) as f32;
// And then we do the same for the head, instead making it fully red to distinguish it.
let rectangle = graphics::Mesh::new_rectangle(
ctx,
graphics::DrawMode::fill(),
ggez::graphics::Rect {
x: (self.pos.x as u16 * GRID_CELL_SIZE as u16 * *multiplier as u16) as f32,
y: (self.pos.y as u16 * GRID_CELL_SIZE as u16 * *multiplier as u16) as f32,
w: dimension,
h: dimension,
},
[1.0, 0.5, 0.0, 1.0].into(),
)?;
graphics::draw(ctx, &rectangle, (ggez::mint::Point2 { x: 0.0, y: 0.0 },))?;
Ok(())
}
}
/// Now we have the heart of our game, the GameState. This struct
/// will implement ggez's `EventHandler` trait and will therefore drive
/// everything else that happens in our game.
struct GameState {
avatar: Avatar,
/// And we track the last time we updated so that we can limit
/// our update rate.
last_update: Instant,
/// integer multiples for scaling the display
size_multiplier: u8,
fullscreen: bool,
scene_width: u8,
scene_height: u8,
}
impl GameState {
pub fn new() -> Self {
let avatar = Avatar {
pos: (GRID_SIZE.0 / 4, GRID_SIZE.1 / 2).into(),
};
GameState {
avatar,
last_update: Instant::now(),
size_multiplier: 4,
fullscreen: false,
scene_width: 16,
scene_height: 9
}
}
fn toggle_fullscreen(&mut self) {
self.fullscreen = !self.fullscreen;
}
}
/// Now we implement EventHandler for GameState. This provides an interface
/// that ggez will call automatically when different events happen.
impl event::EventHandler for GameState {
/// Update will happen on every frame before it is drawn. This is where we update
/// our game state to react to whatever is happening in the game world.
fn update(&mut self, _ctx: &mut Context) -> GameResult {
// First we check to see if enough time has elapsed since our last update based on
// the update rate we defined at the top.
if Instant::now() - self.last_update >= Duration::from_millis(MILLIS_PER_UPDATE) {
self.avatar.update();
// If we updated, we set our last_update to be now
self.last_update = Instant::now();
}
// Finally we return `Ok` to indicate we didn't run into any errors
Ok(())
}
/// draw is where we should actually render the game's current state.
fn draw(&mut self, ctx: &mut Context) -> GameResult {
graphics::clear(ctx, [0.1, 0.1, 0.1, 1.0].into());
// todo draw the whole game, not just the avatar
self.avatar.draw(ctx, &self.size_multiplier)?;
// Finally we call graphics::present to cycle the GPU's framebuffer and display
// the new frame we just drew.
graphics::present(ctx)?;
// We yield the current thread until the next update
ggez::timer::yield_now();
Ok(())
}
/// key_down_event gets fired when a key gets pressed.
fn key_down_event(
&mut self,
ctx: &mut Context,
keycode: KeyCode,
modifier: KeyMods,
_repeat: bool,
) {
if let Some(dir) = Direction::from_keycode(keycode) {
match dir {
Direction::Up => {
if self.avatar.pos.y > 0 {
self.avatar.pos.y -= 1
}
}
Direction::Right => {
if self.avatar.pos.x < GRID_SIZE.0 - 1 {
self.avatar.pos.x += 1
}
}
Direction::Down => {
// if y is less than 8 it's ok to increment it
if self.avatar.pos.y < GRID_SIZE.1 - 1 {
self.avatar.pos.y += 1
}
}
Direction::Left => {
if self.avatar.pos.x > 0 {
self.avatar.pos.x -= 1
}
for (v, value) in colour.iter().enumerate() {
screen[
(
// player vertical offset (number of lines above)
(player_y as usize * 8 * (8 * self.width as usize))
+
// player horizontal offset; number of pixels to the left
(player_x as usize * 8)
+
// tile vertical offset; number of lines within tile
(tile_y as usize * (8 * self.width as usize))
+
(tile_x as usize) // tile horizontal offset
)
* 4 // we're dealing with rgba values so multiply everything by 4
+ v // value offset: which of the rgba values?
] = value.clone();
}
}
}
// todo handle plus/minus keys
if keycode == KeyCode::Add {
self.size_multiplier += 1;
} else if keycode == KeyCode::Subtract && self.size_multiplier > 1 {
self.size_multiplier -= 1;
}
if keycode == KeyCode::F11 || (modifier == KeyMods::ALT && keycode == KeyCode::Return) {
self.toggle_fullscreen();
if self.fullscreen {
graphics::set_fullscreen(ctx, FullscreenType::True).unwrap();
} else {
graphics::set_fullscreen(ctx, FullscreenType::Windowed).unwrap();
graphics::set_drawable_size(
ctx,
(self.scene_width * self.size_multiplier) as f32,
(self.scene_height * self.size_multiplier) as f32
).unwrap();
}
}
// todo change window size
}
// fn update(&self) {
//
// }
}
fn window_setup(x: u8, y: u8, multiplier: u8) -> (Context, EventsLoop) {
let x = (x as u16 * GRID_CELL_SIZE as u16 * multiplier as u16) as f32;
let y = (y as u16 * GRID_CELL_SIZE as u16 * multiplier as u16) as f32;
fn main() -> Result<(), Error> {
env_logger::init();
// Here we use a ContextBuilder to setup metadata about our game. First the title and author
let (ctx, events_loop) = ggez::ContextBuilder::new("snake", "Gray Olson")
// Next we set up the window. This title will be displayed in the title bar of the window.
.window_setup(
ggez::conf::WindowSetup::default().title("Write your game's title here")
)
// Now we get to set the size of the window, which we use our SCREEN_SIZE constant from earlier to help with
.window_mode(ggez::conf::WindowMode::default().dimensions(x, y))
// And finally we attempt to build the context and create the window. If it fails, we panic with the message
// "Failed to build ggez context"
.build()
.unwrap();
let mut game = Game {
width: 16,
height: 9,
player_position: (8, 4),
player_avatar: Image { pixels: [
0,0,0,2,2,0,0,0,
0,0,0,2,2,0,0,0,
0,0,1,1,1,0,2,0,
0,1,1,1,1,1,0,0,
2,0,1,1,1,0,0,0,
0,0,3,3,3,0,0,0,
0,0,3,0,3,0,0,0,
0,0,3,0,3,0,0,0,
]},
palette: [
[0xff, 0x7f, 0x7f, 0xff],
[0xff, 0xb2, 0x7f, 0xff],
[0xff, 0xe9, 0x7f, 0xff],
[0x00, 0x7f, 0x7f, 0x46],
],
current_music: None,
music: HashMap::new(),
};
(ctx, events_loop)
}
let event_loop = EventLoop::new();
let mut input = WinitInputHelper::new();
fn main() -> GameResult {
// Next we create a new instance of our GameState struct, which implements EventHandler
let state = &mut GameState::new();
let (mut ctx, mut events_loop) = window_setup(
GRID_SIZE.0,
GRID_SIZE.1,
state.size_multiplier
let (window, p_width, p_height, mut _hidpi_factor) = create_window(
"pixels test",
(game.width * 8) as f64,
(game.height * 8) as f64,
&event_loop
);
// And finally we actually run our game, passing in our context and state.
event::run(&mut ctx, &mut events_loop, state)
let surface_texture = SurfaceTexture::new(p_width, p_height, &window);
let mut pixels = PixelsBuilder::new(
(game.width * 8) as u32, (game.height * 8) as u32, surface_texture
)
.wgpu_backend(BackendBit::GL | BackendBit::PRIMARY)
.enable_vsync(false)
.build()?;
let device = rodio::default_output_device().unwrap();
let source = rodio_xm::XMSource::from_bytes(
include_bytes!("../ninety degrees.xm")
);
let sink = rodio::Sink::new(&device);
sink.append(source);
sink.pause();
game.music.insert(":ninety degrees".into(), sink);
let source = rodio_xm::XMSource::from_bytes(
include_bytes!("../orn_keygentheme2001.xm")
);
let sink = rodio::Sink::new(&device);
sink.append(source);
sink.pause();
game.music.insert("orn_keygentheme2001".into(), sink);
game.current_music = None;
event_loop.run(move |event, _, control_flow| {
// The one and only event that winit_input_helper doesn't have for us...
if let Event::RedrawRequested(_) = event {
game.draw(pixels.get_frame());
if pixels
.render()
.map_err(|e| error!("pixels.render() failed: {:?}", e))
.is_err()
{
*control_flow = ControlFlow::Exit;
return;
}
}
// For everything else, for let winit_input_helper collect events to build its state.
// It returns `true` when it is time to update our game state and request a redraw.
if input.update(&event) {
// Close events
if input.key_pressed(VirtualKeyCode::Escape) || input.quit() {
*control_flow = ControlFlow::Exit;
return;
}
if input.key_pressed(VirtualKeyCode::M) {
// pause the current tune
if game.current_music.is_some() {
game.music.get(game.current_music.as_ref().unwrap()).unwrap().pause();
}
if game.current_music.is_none() || game.current_music.as_ref().unwrap() == "orn_keygentheme2001" {
// play the first tune
game.current_music = Some(":ninety degrees".into());
game.music.get(game.current_music.as_ref().unwrap()).unwrap().play();
} else {
// play the second tune
game.current_music = Some("orn_keygentheme2001".into());
game.music.get(game.current_music.as_ref().unwrap()).unwrap().play();
}
}
if input.key_pressed(VirtualKeyCode::Left) {
let (x, y) = game.player_position;
if x > 0 {
game.player_position = (x - 1, y);
window.request_redraw();
}
}
if input.key_pressed(VirtualKeyCode::Right) {
let (x, y) = game.player_position;
if x < game.width as u8 - 1 {
game.player_position = (x + 1, y);
window.request_redraw();
}
}
if input.key_pressed(VirtualKeyCode::Up) {
let (x, y) = game.player_position;
if y > 0 {
game.player_position = (x, y - 1);
window.request_redraw();
}
}
if input.key_pressed(VirtualKeyCode::Down) {
let (x, y) = game.player_position;
if y < game.height as u8 - 1 {
game.player_position = (x, y + 1);
window.request_redraw();
}
}
// Adjust high DPI factor
if let Some(factor) = input.scale_factor_changed() {
_hidpi_factor = factor;
window.request_redraw();
}
// Resize the window
if let Some(size) = input.window_resized() {
pixels.resize_surface(size.width, size.height);
window.request_redraw();
}
*control_flow = ControlFlow::Wait;
}
});
}
#[cfg(not(target_os = "windows"))]
fn window_builder(title: &str, event_loop: &EventLoop<()>) -> winit::window::Window {
winit::window::WindowBuilder::new()
.with_visible(false)
.with_title(title).build(&event_loop).unwrap()
}
#[cfg(target_os = "windows")]
fn window_builder(title: &str, event_loop: &EventLoop<()>) -> winit::window::Window {
use winit::platform::windows::WindowBuilderExtWindows;
winit::window::WindowBuilder::new()
.with_drag_and_drop(false)
.with_visible(false)
.with_title(title).build(&event_loop).unwrap()
}
/// Create a window for the game.
///
/// Automatically scales the window to cover about 2/3 of the monitor height.
///
/// # Returns
///
/// Tuple of `(window, surface, width, height, hidpi_factor)`
/// `width` and `height` are in `PhysicalSize` units.
fn create_window(
title: &str,
width: f64,
height: f64,
event_loop: &EventLoop<()>,
) -> (winit::window::Window, u32, u32, f64) {
let window = window_builder(title, event_loop);
let hidpi_factor = window.scale_factor();
// Get dimensions
let (monitor_width, monitor_height) = {
if let Some(monitor) = window.current_monitor() {
let size = monitor.size().to_logical(hidpi_factor);
(size.width, size.height)
} else {
(width, height)
}
};
let scale = (monitor_height / height * 2.0 / 3.0).round().max(1.0);
// Resize, center, and display the window
let min_size: winit::dpi::LogicalSize<f64> =
PhysicalSize::new(width, height).to_logical(hidpi_factor);
let default_size =
LogicalSize::new(width * scale, height * scale);
let center = LogicalPosition::new(
(monitor_width - width * scale) / 2.0,
(monitor_height - height * scale) / 2.0,
);
window.set_inner_size(default_size);
window.set_min_inner_size(Some(min_size));
window.set_outer_position(center);
window.set_visible(true);
let size = default_size.to_physical::<f64>(hidpi_factor);
(
window,
size.width.round() as u32,
size.height.round() as u32,
hidpi_factor,
)
}

44
src/colour.rs Normal file
View File

@ -0,0 +1,44 @@
use serde_derive::{Serialize, Deserialize};
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Colour {
pub red: u8,
pub green: u8,
pub blue: u8,
pub alpha: u8,
}
impl Colour {
pub fn from(colours: Vec<u8>) -> Colour {
const ZERO: u8 = 0;
Colour {
red: *colours.get(0).unwrap_or(&ZERO),
green: *colours.get(1).unwrap_or(&ZERO),
blue: *colours.get(2).unwrap_or(&ZERO),
alpha: *colours.get(3).unwrap_or(&255),
}
}
pub fn to_vec(&self) -> Vec<u8> {
vec![self.red, self.green, self.blue, self.alpha]
}
}
#[cfg(test)]
mod test {
use crate::Colour;
#[test]
fn test_colour_from_intermediate() {
let output = Colour::from(vec![64, 128, 192, 255]);
let expected = Colour { red: 64, green: 128, blue: 192, alpha: 255 };
assert_eq!(output, expected);
}
#[test]
fn test_colour_to_intermediate() {
let output = Colour { red: 64, green: 128, blue: 192, alpha: 255 }.to_vec();
let expected = vec![64, 128, 192, 255];
assert_eq!(output, expected);
}
}

49
src/config.rs Normal file
View File

@ -0,0 +1,49 @@
use serde_derive::{Serialize, Deserialize};
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Config {
/// used in the window title bar
name: Option<String>,
width: u8,
height: u8,
/// animation rate in milliseconds
tick: u64,
/// if this is not specified, the game will pick the first room it finds
starting_room: Option<String>,
/// major / minor
version: (u8, u8),
}
#[cfg(test)]
mod test {
use crate::Config;
#[test]
fn test_config_from_toml() {
let output: Config = toml::from_str(include_str!("test-resources/basic/game.toml")).unwrap();
let expected = Config {
name: Some("Write your game's title here".to_string()),
width: 16,
height: 9,
tick: 400,
starting_room: Some("example room".to_string()),
version: (0, 0)
};
assert_eq!(output, expected);
}
#[test]
fn test_config_to_toml() {
let output = toml::to_string(&Config {
name: Some("Write your game's title here".to_string()),
width: 16,
height: 9,
tick: 400,
starting_room: Some("example room".to_string()),
version: (0, 0)
}).unwrap();
let expected = include_str!("test-resources/basic/game.toml");
assert_eq!(&output, expected);
}
}

72
src/image.rs Normal file
View File

@ -0,0 +1,72 @@
use serde_derive::{Serialize, Deserialize};
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Image {
pub name: String,
/// colour indexes - todo convert to [u8; 64]?
pub pixels: Vec<u8>,
}
impl Image {
fn from(intermediate: IntermediateImage) -> Image {
Image {
name: intermediate.name.to_owned(),
pixels: intermediate.pixels.split_whitespace().collect::<String>().chars().map(
|char|char as u8
).collect()
}
}
}
/// for toml purposes
#[derive(Debug, Serialize, Deserialize)]
pub(crate) struct IntermediateImages {
/// singular so each image is named "image" instead of "images" in toml
image: Vec<IntermediateImage>,
}
impl IntermediateImages {
fn to_images(&self) -> Vec<Image> {
self.image.iter().map(|intermediate|
Image::from(intermediate.clone())
).collect()
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub(crate) struct IntermediateImage {
name: String,
pixels: String,
}
impl IntermediateImage {
// todo refactor
fn from(image: Image) -> IntermediateImage {
let mut string = "\n".to_string();
let sqrt = (image.pixels.len() as f64).sqrt() as usize;
for line in image.pixels.chunks(sqrt) {
for pixel in line {
string.push_str(&format!("{}", *pixel));
}
string.push('\n');
}
IntermediateImage {
name: image.name.to_owned(),
/// todo wtf? I guess this crate doesn't handle multiline strings correctly
pixels: format!("\"\"{}\"\"", string),
}
}
}
#[cfg(test)]
mod test {
// #[test]
// fn test_image_from_toml() {
// let str = include_str!("test-resources/basic/images.toml");
// let output: Image = toml::from_str(str).unwrap();
// let expected = crate::mock::image::avatar();
// assert_eq!(output, expected);
// }
}

View File

@ -1,83 +1,18 @@
use std::collections::HashMap;
use std::fs;
use std::path::PathBuf;
use serde_derive::{Serialize, Deserialize};
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Colour {
red: u8,
green: u8,
blue: u8,
alpha: u8,
}
mod colour;
mod config;
mod image;
mod mock;
mod palette;
mod room;
impl Colour {
pub fn from(colours: Vec<u8>) -> Colour {
const ZERO: u8 = 0;
Colour {
red: *colours.get(0).unwrap_or(&ZERO),
green: *colours.get(1).unwrap_or(&ZERO),
blue: *colours.get(2).unwrap_or(&ZERO),
alpha: *colours.get(3).unwrap_or(&255),
}
}
pub fn to_vec(&self) -> Vec<u8> {
vec![self.red, self.green, self.blue, self.alpha]
}
}
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Palette {
name: String,
colours: Vec<Colour>,
}
impl Palette {
pub fn from(name: &str, toml: &str) -> Self {
let intermediate: IntermediatePalette = toml::from_str(toml).unwrap();
println!("palette name: {}", name);
for colour in &intermediate.colours {
println!("palette colour: {}{}{}", colour[0], colour[1], colour[2]);
}
Palette {
name: name.to_string(),
colours: intermediate.colours.iter().map(|vec| {
Colour::from(vec.clone())
}).collect(),
}
}
pub fn from_file(path: String) -> Self {
// todo get name without extension
let name = "blah";
let toml = fs::read_to_string(path).unwrap();
Self::from(name, &toml)
}
}
/// for toml purposes
#[derive(Serialize, Deserialize)]
struct IntermediatePalette {
colours: Vec<Vec<u8>>,
}
/// for toml purposes
#[derive(Serialize, Deserialize)]
struct IntermediatePalettes {
/// singular so each palette section is named "palette" instead of "palettes" in toml
palette: Vec<IntermediatePalette>,
}
impl IntermediatePalettes {
pub fn from_dir() -> Self {
Self {
palette: vec![]
}
}
}
pub use colour::Colour;
pub use palette::Palette;
pub use palette::IntermediatePalette;
use crate::config::Config;
#[derive(Eq, Hash, PartialEq)]
pub struct Position {
@ -85,66 +20,6 @@ pub struct Position {
y: u8,
}
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Image {
name: String,
/// colour indexes
pixels: Vec<u8>,
}
impl Image {
fn from(intermediate: IntermediateImage) -> Image {
Image {
name: intermediate.name.to_owned(),
pixels: intermediate.pixels.split_whitespace().collect::<String>().chars().map(
|char|char as u8
).collect()
}
}
}
/// for toml purposes
#[derive(Debug, Serialize, Deserialize)]
struct IntermediateImages {
/// singular so each image is named "image" instead of "images" in toml
image: Vec<IntermediateImage>,
}
impl IntermediateImages {
fn to_images(&self) -> Vec<Image> {
self.image.iter().map(|intermediate|
Image::from(intermediate.clone())
).collect()
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
struct IntermediateImage {
name: String,
pixels: String,
}
impl IntermediateImage {
// todo refactor
fn from(image: Image) -> IntermediateImage {
let mut string = "\n".to_string();
let sqrt = (image.pixels.len() as f64).sqrt() as usize;
for line in image.pixels.chunks(sqrt) {
for pixel in line {
string.push_str(&format!("{}", *pixel));
}
string.push('\n');
}
IntermediateImage {
name: image.name.to_owned(),
/// todo wtf? I guess this crate doesn't handle multiline strings correctly
pixels: format!("\"\"{}\"\"", string),
}
}
}
// #[derive(Serialize, Deserialize)]
// pub struct Thing {
// name: Option<String>,
@ -153,42 +28,6 @@ impl IntermediateImage {
// }
//
pub struct Room {
name: String,
width: u8,
height: u8,
/// thing names and their positions
background: HashMap<Position, String>,
foreground: HashMap<Position, String>,
}
#[derive(Serialize, Deserialize)]
struct IntermediateRoom {
name: String,
background: Vec<String>,
foreground: Vec<String>,
}
impl IntermediateRoom {
fn from(room: Room) -> IntermediateRoom {
fn hashmap_to_vec(hash: HashMap<Position, String>, width: u8, height: u8) -> Vec<String> {
let mut thing_ids = Vec::new();
while thing_ids.len() < (width * height) as usize {
thing_ids.push(String::new());
}
thing_ids
}
IntermediateRoom {
name: "".to_string(),
background: vec![],
foreground: vec![]
}
}
}
// #[derive(Serialize, Deserialize)]
// pub enum DataType {
// Image,
@ -261,18 +100,6 @@ impl IntermediateRoom {
// }
// }
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Config {
/// used in the window title bar
name: Option<String>,
width: u8,
height: u8,
/// animation rate in milliseconds
tick: u64,
/// if this is not specified, the game will pick the first room it finds
starting_room: Option<String>,
}
#[derive(Serialize, Deserialize)]
pub struct Game {
config: Config,
@ -280,225 +107,36 @@ pub struct Game {
// variables: Vec<Variable>,
// triggers: HashMap<String, ScriptCollection>,
}
//
// #[derive(Debug)]
// pub struct GameParseError;
//
// impl Game {
// pub fn from(s: &str) -> Result<Game, GameParseError> {
// let result = toml::from_str(s);
// if result.is_ok() {
// Ok(result.unwrap())
// } else {
// Err(GameParseError)
// }
// }
// }
//
mod mock {
pub(crate) mod image {
use crate::Image;
#[derive(Debug)]
pub struct GameParseError;
pub fn bg() -> Image {
Image {
name: "bg".to_string(),
pixels: vec![
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
]
}
impl Game {
pub fn from(path: String) -> Result<Game, GameParseError> {
let path = PathBuf::from(path);
let mut palettes_dir = path.clone();
palettes_dir.push("palettes");
let palette_files = palettes_dir.read_dir()
.expect("couldn't find any palettes");
for file in palette_files {
let file = file.unwrap();
println!("palette found: {:?}", file.file_name());
}
pub fn block() -> Image {
Image {
name: "block".to_string(),
pixels: vec![
1,1,1,1,1,1,1,1,
1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,1,
1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,
1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,1,
1,1,1,1,1,1,1,1,
]
}
}
// todo load config
let mut game_config = path.clone();
game_config.push("game.toml");
let config = fs::read_to_string(game_config)
.expect("Couldn't load game config");
let config: Config = toml::from_str(&config)
.expect("Couldn't parse game config");
pub fn avatar() -> Image {
Image {
name: "avatar".to_string(),
pixels: vec![
0,0,0,2,2,0,0,0,
0,0,0,2,2,0,0,0,
0,0,0,2,2,0,0,0,
0,0,2,2,2,2,0,0,
0,2,2,2,2,2,2,0,
2,0,2,2,2,2,0,2,
0,0,2,0,0,2,0,0,
0,0,2,0,0,2,0,0,
]
Ok(
Game {
config,
}
}
pub fn cat() -> Image {
Image {
name: "cat".to_string(),
pixels: vec![
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,2,0,2,0,0,0,2,
0,2,2,2,0,0,0,2,
0,2,2,2,0,0,2,0,
0,2,2,2,2,2,0,0,
0,0,2,2,2,2,0,0,
0,0,2,0,0,2,0,0,
]
}
}
}
pub(crate) mod palette {
use crate::{Palette, Colour, IntermediatePalette};
pub(crate) fn intermediate() -> IntermediatePalette {
IntermediatePalette {
colours: vec![
vec![0,0,0,0],
vec![0,81,104,255],
vec![118,159,155,255],
vec![155,155,155,255],
]
}
}
pub(crate) fn default() -> Palette {
Palette {
name: "blueprint".to_string(),
colours: vec![
Colour { red: 0, green: 0, blue: 0, alpha: 0 },
Colour { red: 0, green: 81, blue: 104, alpha: 255 },
Colour { red: 118, green: 159, blue: 155, alpha: 255 },
Colour { red: 155, green: 155, blue: 155, alpha: 255 },
],
}
}
)
}
}
#[cfg(test)]
mod test {
use crate::{Game, Config, Palette, Colour, Image, IntermediatePalettes, IntermediateImage, IntermediateImages};
#[test]
fn test_config_from_toml() {
let output: Config = toml::from_str(include_str!("test-resources/basic/game.toml")).unwrap();
let expected = Config {
name: Some("Write your game's title here".to_string()),
width: 16,
height: 9,
tick: 400,
starting_room: Some("example room".to_string())
};
assert_eq!(output, expected);
}
#[test]
fn test_config_to_toml() {
let output = toml::to_string(&Config {
name: Some("Write your game's title here".to_string()),
width: 16,
height: 9,
tick: 400,
starting_room: Some("example room".to_string())
}).unwrap();
let expected = include_str!("test-resources/basic/game.toml");
assert_eq!(&output, expected);
}
#[test]
fn test_palette_from_toml() {
let output = Palette::from(
"blueprint",
include_str!("test-resources/basic/palettes/blueprint.toml")
);
let expected = crate::mock::palette::default();
assert_eq!(output, expected);
}
#[test]
fn test_palette_to_toml() {
let intermediate = crate::mock::palette::intermediate();
let output = toml::to_string(&intermediate).unwrap();
let expected = include_str!("test-resources/basic/palettes/blueprint.toml");
assert_eq!(&output, expected);
}
// #[test]
// fn test_image_from_toml() {
// let str = include_str!("test-resources/basic/images.toml");
// let output: Image = toml::from_str(str).unwrap();
// let expected = crate::mock::image::avatar();
// assert_eq!(output, expected);
// }
#[test]
fn test_colour_from_intermediate() {
let output = Colour::from(vec![64, 128, 192, 255]);
let expected = Colour { red: 64, green: 128, blue: 192, alpha: 255 };
assert_eq!(output, expected);
}
#[test]
fn test_colour_to_intermediate() {
let output = Colour { red: 64, green: 128, blue: 192, alpha: 255 }.to_vec();
let expected = vec![64, 128, 192, 255];
assert_eq!(output, expected);
}
// #[test]
// fn test_images_from_intermediate() {
// let str = include_str!("test-resources/basic/images.toml");
// let output: Vec<IntermediateImage> = toml::from_str(str).unwrap();
// print!("{}", output.len());
// }
// #[test]
// fn test_images_to_toml() {
// let images = IntermediateImages {
// image: vec![
// IntermediateImage::from(crate::mock::image::bg()),
// IntermediateImage::from(crate::mock::image::block()),
// IntermediateImage::from(crate::mock::image::avatar()),
// IntermediateImage::from(crate::mock::image::cat()),
// ]
// };
//
// let output = toml::to_string(&images).unwrap();
// let expected = include_str!("test-resources/basic/images.toml");
//
// // I think this is failing because one has escaped quotation marks and one has normal ones(??)
// assert_eq!(output, expected);
// }
// #[test]
// fn test_images_from_toml() {
// let str = include_str!("test-resources/basic/images.toml");
// let output: IntermediateImages = toml::from_str(str).unwrap();
// let output = output.to_images();
// let expected = vec![
// crate::mock::image::bg(),
// crate::mock::image::block(),
// crate::mock::image::avatar(),
// crate::mock::image::cat(),
// ];
// assert_eq!(output, expected);
// }
}

94
src/mock.rs Normal file
View File

@ -0,0 +1,94 @@
pub(crate) mod image {
use crate::image::Image;
pub fn bg() -> Image {
Image {
name: "bg".to_string(),
pixels: vec![
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
]
}
}
pub fn block() -> Image {
Image {
name: "block".to_string(),
pixels: vec![
1,1,1,1,1,1,1,1,
1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,1,
1,0,0,1,1,0,0,1,
1,0,0,1,1,0,0,1,
1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,1,
1,1,1,1,1,1,1,1,
]
}
}
pub fn avatar() -> Image {
Image {
name: "avatar".to_string(),
pixels: vec![
0,0,0,2,2,0,0,0,
0,0,0,2,2,0,0,0,
0,0,0,2,2,0,0,0,
0,0,2,2,2,2,0,0,
0,2,2,2,2,2,2,0,
2,0,2,2,2,2,0,2,
0,0,2,0,0,2,0,0,
0,0,2,0,0,2,0,0,
]
}
}
pub fn cat() -> Image {
Image {
name: "cat".to_string(),
pixels: vec![
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,2,0,2,0,0,0,2,
0,2,2,2,0,0,0,2,
0,2,2,2,0,0,2,0,
0,2,2,2,2,2,0,0,
0,0,2,2,2,2,0,0,
0,0,2,0,0,2,0,0,
]
}
}
}
pub(crate) mod palette {
use crate::{Palette, Colour, IntermediatePalette};
pub(crate) fn intermediate() -> IntermediatePalette {
IntermediatePalette {
colours: vec![
vec![0,0,0,0],
vec![0,81,104,255],
vec![118,159,155,255],
vec![155,155,155,255],
]
}
}
pub(crate) fn default() -> Palette {
Palette {
name: "blueprint".to_string(),
colours: vec![
Colour { red: 0, green: 0, blue: 0, alpha: 0 },
Colour { red: 0, green: 81, blue: 104, alpha: 255 },
Colour { red: 118, green: 159, blue: 155, alpha: 255 },
Colour { red: 155, green: 155, blue: 155, alpha: 255 },
],
}
}
}

80
src/palette.rs Normal file
View File

@ -0,0 +1,80 @@
use serde_derive::{Serialize, Deserialize};
use crate::colour::Colour;
use std::fs;
#[derive(Debug, Eq, PartialEq, Serialize, Deserialize)]
pub struct Palette {
pub name: String,
pub colours: Vec<Colour>,
}
impl Palette {
pub fn from(name: &str, toml: &str) -> Self {
let intermediate: IntermediatePalette = toml::from_str(toml).unwrap();
println!("palette name: {}", name);
for colour in &intermediate.colours {
println!("palette colour: {}{}{}", colour[0], colour[1], colour[2]);
}
Palette {
name: name.to_string(),
colours: intermediate.colours.iter().map(|vec| {
Colour::from(vec.clone())
}).collect(),
}
}
pub fn from_file(path: String) -> Self {
// todo get name without extension
let name = "blah";
let toml = fs::read_to_string(path).unwrap();
Self::from(name, &toml)
}
}
/// for toml purposes
#[derive(Serialize, Deserialize)]
pub struct IntermediatePalette {
pub colours: Vec<Vec<u8>>,
}
/// for toml purposes
#[derive(Serialize, Deserialize)]
struct IntermediatePalettes {
/// singular so each palette section is named "palette" instead of "palettes" in toml
palette: Vec<IntermediatePalette>,
}
impl IntermediatePalettes {
pub fn from_dir() -> Self {
Self {
palette: vec![]
}
}
}
#[cfg(test)]
mod test {
use crate::Palette;
#[test]
fn test_palette_from_toml() {
let output = Palette::from(
"blueprint",
include_str!("test-resources/basic/palettes/blueprint.toml")
);
let expected = crate::mock::palette::default();
assert_eq!(output, expected);
}
#[test]
fn test_palette_to_toml() {
let intermediate = crate::mock::palette::intermediate();
let output = toml::to_string(&intermediate).unwrap();
let expected = include_str!("test-resources/basic/palettes/blueprint.toml");
assert_eq!(&output, expected);
}
}

42
src/room.rs Normal file
View File

@ -0,0 +1,42 @@
use std::collections::HashMap;
use serde_derive::{Serialize, Deserialize};
use crate::Position;
pub struct Room {
pub name: String,
pub width: u8,
pub height: u8,
/// thing names and their positions
pub background: HashMap<Position, String>,
pub foreground: HashMap<Position, String>,
}
/// todo &str?
#[derive(Serialize, Deserialize)]
struct IntermediateRoom {
name: String,
background: Vec<String>,
foreground: Vec<String>,
}
impl IntermediateRoom {
fn from(room: Room) -> IntermediateRoom {
fn hashmap_to_vec(hash: HashMap<Position, String>, width: u8, height: u8) -> Vec<String> {
let mut thing_ids = Vec::new();
while thing_ids.len() < (width * height) as usize {
thing_ids.push(String::new());
}
thing_ids
}
IntermediateRoom {
name: "".to_string(),
background: vec![],
foreground: vec![]
}
}
}